Soluciones del capítulo 3 Ecuaciones no lineales de primer orden

Héctor Lomelí y Beatriz Rumbos

9 de marzo de 2010

3.1

a) x(t) = t.

d) $x(t) = \tan(t - 1 + \frac{\pi}{4})$.

b) x(t) = t.

c) $x(t) = \frac{1}{2-t}$.

e) $x(t) = \sqrt[3]{2(t+1)^{3/2} - 4\sqrt{2} + 1}$.

3.2

a)
$$y(x) = \sin^{-1} \sqrt{\frac{2}{x^2+1}}$$
.

c)
$$y(t) = -\sqrt{\frac{1}{2}e^t + \frac{1}{2}e^{3t}}$$
.

b)
$$y - \log |y + 2| = -\log |x + 4| - 1$$
.

3.3

a)
$$N(t) = \frac{N^*}{1 + (\frac{N^*}{N_0} - 1)e^{-N^*kt}}$$
 para $N_0 \neq N^*$. Si $N_0 = N^*$ entonces $N(t) \equiv N^*$.

- b) $\lim_{t\to\infty} N(t) = N^*$; es decir, el número de personas que habrá oído el numor cuando t sea muy grande tenderá al número total de personas del pueblito.
- c) Cuévano, Plan de Abajo.

3.4

Haciendo $w=k^{1-\alpha}$ se obtiene la ecuación $\dot{w}=(1-\alpha)s-(1-\alpha)(n+n)w$. Por lo tanto,

$$w(t) = c \exp[-(1 - \alpha)(n + \delta)t] + \frac{s}{n + \delta}.$$

De ahí que la solución solución para k es de la forma

$$k(t) = w(t)^{\frac{1}{1-\alpha}} = \left[c \exp[-(1-\alpha)(n+\delta)t] + \frac{s}{n+\delta}\right]^{\frac{1}{1-\alpha}},$$

1

donde c es una constante. Además, $\lim_{t\to\infty} k(t) = \left[\frac{s}{n+\delta}\right]^{\frac{1}{1-\alpha}} = k^*$.

- a) $\frac{\dot{L}}{L} = \alpha \beta \frac{L}{Y} = \alpha \beta \frac{L}{K^{\gamma} L^{1-\gamma}} = \alpha \beta \frac{L^{\gamma}}{K^{\gamma}}$. Por lo tanto, $\dot{L} = \alpha L \beta \frac{L^{\gamma+1}}{K^{\gamma}}$, donde K es constante.
- b) Haciendo $w=L^{-\gamma}$ se obtiene la ecuación

$$\dot{w} = -\gamma \alpha w + \frac{\beta \gamma}{K^{\gamma}},$$

y por ende

$$w(t) = \left(\frac{1}{L_0^{\gamma}} - \frac{\beta}{\alpha K^{\gamma}}\right) e^{-\alpha \gamma t} + \frac{\beta}{\alpha K^{\gamma}}.$$

Por lo tanto, $L(t) = w(t)^{-\frac{1}{\gamma}} = \left[\left(\frac{1}{L_0^{\gamma}} - \frac{\beta}{\alpha K^{\gamma}} \right) e^{-\alpha \gamma t} + \frac{\beta}{\alpha K^{\gamma}} \right]^{-\frac{1}{\gamma}}.$

c)
$$\lim_{t \to \infty} L(t) = \left(\frac{\beta}{\alpha K^{\gamma}}\right)^{-\frac{1}{\gamma}} = \left(\frac{\alpha}{\beta}\right)^{\frac{1}{\gamma}} K.$$

3.6

a) Notemos que

$$\frac{C\alpha}{r} - L = L - C.$$

Sea $y = \frac{r}{C}(P - L)$, entonces

$$\dot{y} = \frac{r}{C}\dot{P} = \frac{r}{C}\left(rP\left(1 - \frac{P}{C}\right) - E\right) = -\left(\frac{r}{C}P\right)^2 + \frac{r^2}{C}P - \frac{r}{C}E.$$

Por otro lado,

$$-\alpha y - y^2 = -\frac{r\alpha}{C}(P - L) - \left(\frac{r}{C}(P - L)\right)^2$$
$$= -\left(\frac{r}{C}\right)^2(P - L)\left((P - L) + \frac{C\alpha}{r}\right)$$
$$= -\left(\frac{r}{C}\right)^2(P - L)\left(P - (C - L)\right).$$

Al multiplicar los factores del polinomio se obtiene la igualdad.

b) Sea $w=y^{-1}$. La ecuación para w es $\dot{w}=\alpha w+1$. Su solución esta dada por $w(t)=ke^{\alpha t}-\frac{1}{\alpha}$, donde k es una constante. Despejando la constante, obtenemos que $k=1/y_0+1/\alpha$. Esto implica que

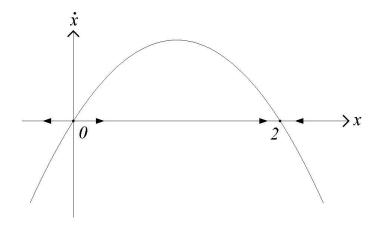
$$y(t) = \frac{\alpha y_0}{(y_0 + \alpha)e^{\alpha t} - y_0}.$$

La solución para P es $P(t) = \frac{C}{r}y(t) + L$, donde $y_0 = \frac{r}{C}(P_0 - L)$.

c) Notemos que

$$y_0 + \alpha = \frac{r}{C} \left(P_0 - L + \frac{C\alpha}{r} \right) = \frac{r}{C} \left(P_0 - (C - L) \right).$$

Por lo tanto, si $P_0 > C - L$, entonces $y_0 + \alpha > 0$. En tal caso $\lim_{t \to \infty} y(t) = 0$ y $\lim_{t \to \infty} P(t) = L$.



a) $x(t) = \frac{1}{2t - 2 + ce^{-t}}$.

b) Sea $w = y^{-2}$, entonces su solución es $w(x) = x + \frac{1}{2} + ce^{2x}$. Por lo tanto $y(x) = \pm \left(x + \frac{1}{2} + ce^{2x}\right)^{-\frac{1}{2}}$. El signo depende de la condición inicial que se utilice.

c) Sea $w = y^{-1}$. Entonces w satisface la ecuación

$$w' + \frac{1}{x}w = \frac{1}{x},$$

cuya solución es $w(x) = \frac{x+c}{x}$. Por lo tanto $y(x) = \frac{x}{x+c}$.

d) Sea $w = y^{-3}$. Resolviendo la ecuación diferencial para w, obtenemos $w(x) = x^3(2x^3 + c)$. Por lo tanto,

$$y(x) = \frac{1}{x (2x^3 + c)^{\frac{1}{3}}}.$$

3.8

a) Sea $w = x^{-6}$, entonces w satisface $\dot{w} = 6w - 6$ y la solución es $w(t) = 1 + ce^{6t}$. Por lo tanto $x(t) = (1 + ce^{6t})^{-1/6}$. Considerando la condición inicial, se obtiene c = 0 y por tanto x(t) = 1.

b) Sea $w = x^{-4}$, entonces w satisface

$$\dot{w} = \frac{-44}{t}w - \frac{4}{t^2}.$$

Por ende, la solución es $w(t) = -\frac{4}{43}t^{-1} + ct^{-44}$ y por lo tanto $x(t) = \left(-\frac{4}{43}t^{-1} + ct^{-44}\right)^{-1/4}$. Al sustituir la condidicón inicial se encuentra que c = 47/43.

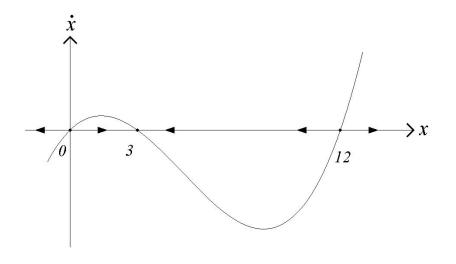
c) Sea $w = y^{-2}$, entonces su solución es $w(t) = t^{-1} + ct^{-1/2}$. Por lo tanto $y(t) = (t^{-1} + ct^{-1/2})^{-1/2}$. Considerando la condición inicial, $y(t) = \sqrt{t}$ con $t \ge 0$.

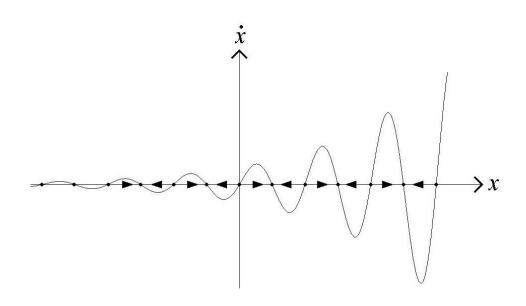
3

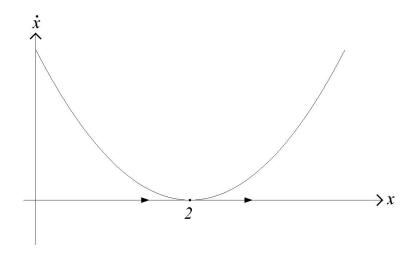
3.9

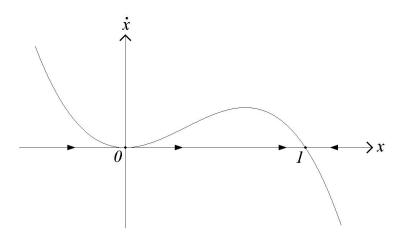
a) x = 0 equilibrio inestable; x = 2 equilibrio estable.

b) x = 0, x = 12 equilibrios inestables; x = 3 equilibrio estable.









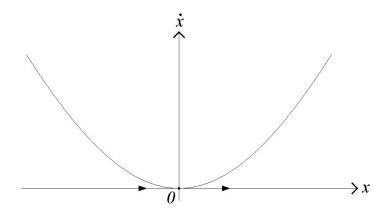
- c) $x = 2n\pi$ equilibrios inestables; $x = (2n + 1)\pi$ equilibrios estables.
- d) x = k equilibrio estable.

- a) Si $x_0 < 2$ entonces x(t) converge a 2. Si $x_0 > 2$ entonces x(t) diverge.
- b) Si $x_0 < 0$ entonces x(t) converge a 0. Si $x_0 > 0$ entonces x(t) converge a 1. x = 1 es un punto de equilibrio estable. En cada caso, aparecen puntos que no son asintóticamente estables.
- c) Si $x_0 < 0$ entonces x(t) converge a 0. Si $x_0 > 0$ entonces x(t) diverge.

3.11

a) Calculando la derivada con respecto a w, se obtiene que

$$\frac{d}{dw}\left(-\frac{u'}{u''}\right) = \frac{-\left(u''\right)^2 + u'u''}{\left(u''\right)^2} = -1 + \frac{u'u'''}{\left(u''\right)^2} = k - 1,$$



Esto implica que

$$-\frac{u'}{u''} = (k-1)w + A,$$

donde A es una constante arbitraria. Por lo que se tiene

$$\frac{-u''}{u'} = \frac{1}{A + (k-1)w}.$$

Podemos resolver la ecuación diferencial anterior. Si $k \neq 1$, obtenemos que

$$u'(w) = B (A + (k-1)w)^{-1/(k-1)},$$

donde B es una constante arbitraria. Al integrar,

$$u(w) = \frac{B(A + (k-1)w)^{(k-2)/(k-1)}}{k-2} + C.$$

Si k = 1, obtenemos que

$$u(w) = -ABe^{-w/A} + C.$$

En cada caso, A, B y C son constantes arbitrarias.

- b) $A, B > 0 \text{ y } k \ge 0.$
- c) Si k = 0 entonces

$$u(w) = \frac{B(A-w)^2}{-2} + C,$$

donde A, B > 0 y $0 < w \le A$. Si u es una función CRRA, entonces necesariamente se tiene que la constante A = 0. Como w > 0 y además se cumple que u' > 0 y u'' < 0, entonces se tiene que k > 1.

3.12

a) Primero resolvemos para m y obtenemos $m(t) = m_0 + \mu t$. Al sustituir en (3.14) obtenemos

$$\dot{p}(t) = \frac{1}{1 - \alpha \lambda} [(\mu + \alpha m_0 + \alpha \mu t) - \alpha p(t)].$$

La solución de la anterior es

$$p(t) = (m_0 + \mu\lambda + \mu t) + (p_0 - m_0 - \mu\lambda) \exp\left(-\frac{\alpha}{1 - \alpha\lambda}t\right).$$

 $\text{Además} \lim_{t \to \infty} p(t) = \infty \text{ y} \lim_{t \to \infty} \dot{p}(t) = \mu = \dot{m}.$

b) En el segundo caso se resuelve la ecuación

$$\dot{p}(t) = \frac{1}{\lambda} [p(t) - m(t)] = \frac{1}{\lambda} [p(t) - m_0 - \mu t].$$

La solución de la anterior es

$$p(t) = (m_0 + \mu\lambda + \mu t) + (p_0 - m_0 - \mu\lambda) \exp\left(\frac{1}{\lambda}t\right).$$

Además $\lim_{t \to \infty} p(t) = \lim_{t \to \infty} \dot{p}(t) = \infty$.

3.13

a) La ecuación para p^e es

$$\dot{p}^e = \frac{\alpha(1-\tau)d}{r-\alpha} - \left(\frac{\alpha r}{r-\alpha}\right)p^e.$$

Resolviendo se obtiene

$$p^{e}(t) = p^* + (p_0^{e} - p^*) \exp\left(\frac{-\alpha rt}{r - \alpha}\right),$$

donde

$$p^* = \frac{(1-\tau)d}{r}.$$

Por otro lado, $p(t) = \frac{1}{\alpha} \dot{p}^e(t) + p^e(t)$ y, por tanto,

$$p(t) = p^* - \frac{\alpha}{r - \alpha} (p_0^e - p^*) \exp\left(\frac{-\alpha rt}{r - \alpha}\right).$$

Además $\lim_{t \to \infty} p^e(t) = \lim_{t \to \infty} p(t) = p^*$.

b) Si τ aumenta inesperadamente a $\bar{\tau}$, entonces el valor del precio de equilibrio p^* pasa a un nuevo precio de equilibrio \bar{p}^* que es menor a p^* . En el momento del cambio la derivada $\dot{p}(t)$ pasa de ser cero a ser negativo (el precio tiende a disminuir). Después \dot{p} aumenta en el tiempo y el sistema procede asintóticamente hacia el nuevo equilibrio $\bar{p}^* < p^*$. El antiguo precio de equilibrio se puede considerar como condición inicial al tiempo T. Por lo tanto, la expresión para las soluciones a partir del instante T serían

$$p^{e}(t) = \bar{p}^* + (p^* - \bar{p}^*) \exp\left(\frac{-\alpha r(t - T)}{r - \alpha}\right),\,$$

$$p(t) = \bar{p}^* - \frac{\alpha}{r - \alpha} (p^* - \bar{p}^*) \exp\left(\frac{-\alpha r(t - T)}{r - \alpha}\right),$$

donde $t \ge T$ y $\bar{p}^* = (1 - \bar{\tau})d/r$

c) La solución es

$$p(t) = \left[p_0 - \frac{(1-\tau)d}{r} \right] e^{rt} + \frac{(1-\tau)d}{r}.$$

d) El nivel de precios diverge a menos que al momento del aumento inesperado se tenga que $p(t) = \frac{(1-\bar{\tau})d}{r}$.

7

Si hacemos

$$f(P) = rP\left(1 - \frac{P}{C}\right) - E,$$

entonces podemos escribir

$$f(P) = -\frac{r}{C}P^2 + rP - E.$$

La función f es cuadrática y su gráfica es una parábola que abre hacia abajo. EL discriminante de la función es

$$\Delta = r^2 - \frac{4rE}{C} = r\left(r - \frac{4E}{C}\right).$$

El número de puntos fijos del sistema dinámico está relacionado con el signo de Δ . Tenemos tres casos.

- E < Cr/4. El discriminante Δ es positivo y por lo tanto la función f tiene dos raíces. Es decir, el sistema tiene dos puntos fijos y la dinámica se divide en tres intervalos. En dos de ellos P decrece y en uno crece.
- E = Cr/4. El discriminante Δ es cero y por lo tanto la función f tiene una raíz. El sistema tiene un sólo punto fijo y la dinámica se divide en dos intervalos. En ambos, P decrece.
- E > Cr/4. El discriminante Δ es negativo y por lo tanto la función f no tiene raíces. La función P siempre decrece.

3.15

Se tiene la siguiente ecuación.

$$\dot{P} = f(P) = g(\alpha - \delta P - \gamma P + \beta).$$

Notemos que

$$f'(P) = g'(\alpha - \delta P - \gamma P + \beta)(\delta - \gamma).$$

Esto implica que

$$f(P^*) = g(0) = 0,$$
 $f'(P^*) = g'(0)(\delta - \gamma) < 0.$

Por el teorema 3.3.1, el punto P^* es asintóticamente estable.